Fbae Logo
Home | | Support Us | Contact Us
Goals & Objectives Our Position Special Topics Important Publications Important Links Events News Biosafety
Fbae Header Home





Fighting GMO contamination around the world GRAIN Seedling,

Ever since GMOs were first introduced in the mid-1990s, farmers’ groups and NGOs have warned that they would contaminate other crops. This has happened, just as predicted. In this article we look at how communities in different parts of the world that have experienced contamination are developing strategies to fight against it.

When GM crops are planted they contaminate other crops with transgenic material. In places where GM crops are grown on a large scale, it has already become almost impossible to find crops of the same species that are free of GM material. And the contamination spreads even to areas where GM crops are not officially permitted. [1] The GM Contamination Register, managed by GeneWatch UK and Greenpeace International, has documented more than 216 cases of GM contamination in 57 countries over the past 10 years, including 39 cases in 2007. [2]

Monsanto and the other biotech corporations have always known that their GM crops would contaminate other crops. Indeed, it was part of their strategy to force the world into accepting GMOs. But around the world people are refusing to lie down and accept genetic modification as a fact of life; instead they are struggling against it, even in places subject to contamination. In fact, some communities experiencing contamination are developing sophisticated forms of resistance to GM crops. These usually begin with short-term strategies to decontaminate their local seeds, but often seek over the long term to strengthen their traditional food and agricultural systems.

We look at the experiences of communities in different parts of the world in dealing with GM contamination to see what insights they can offer others faced with similar situations. Each situation is unique, and gives rise to different processes. Common to all of them is the primary importance of collective action – of communities working at the grassroots to identify their own solutions and not depending on courts or governments, which, without strong social pressure, tend to side with industry.
The experience of communities in Mexico

For the indigenous peoples of Mexico and Guatemala, maize is the basis of life. In the creation story of the Maya, maize was the only material into which the gods were able to breathe life, and they used it to make the flesh of the first four people on Earth. For other peoples of Mexico, maize is itself a goddess. The plant has been the fundamental food of Mexicans for centuries, and thousands of varieties provide an amazing range of nutrients, flavours, consistencies, recipes, and medicinal uses.
In January 2002, researchers at the University of California in Berkeley announced their discovery that local varieties of maize in the highlands of Oaxaca state had been contaminated. Other communities of small farmers carried out tests on their own crops and were shocked to find that they too had been contaminated. For these people, it was a deep blow to their culture. They could not sit back: something had to be done.

At first, though, they did not know what to do. GMOs were new to them. They started by bringing together the nearby communities that might also have suffered contamination, as well as NGOs that they were close to. Workshops were held and people were mandated by their local assemblies to discuss on behalf of their communities. The strategy was thus collective from the beginning. This is the first point to be noted about the Mexican experience.

One fundamental point of agreement reached early on was that this GM contamination needed to be viewed as part of a war. It was not an accident or an isolated issue, but part of a war against farmers and indigenous peoples – in their words, a war against the people of maize. They needed to respond accordingly – defending not just their seeds but their livelihoods, their cultures, their whole way of life.

Initially, though, there were few practical ideas about how to decontaminate their maize and prevent further contamination. Concern was expressed that the communities might not have the technical capacity to deal with such a complex problem. But these communities and the NGOs working with them had a great deal of experience in finding grassroots solutions to the problems affecting them, and so, rather than look to outside experts, they turned the question upside down, focusing not on GM maize, which they did not know, but on their own varieties of maize, which they knew intimately.

They began by sharing their own knowledge of maize and what maize needs to be healthy. The most basic point was that to keep their maize alive and well they had to sow it and eat it. In many communities, traditional maize was disappearing because people were sowing it less. The first step in defending their maize was thus to plant more of it. It was also felt, in response to GMOs, that seeds were dangerous when their history was not known. So it was agreed that seeds should be planted only when their history was known, or when they came from a source that was well known to them.

As the communities put these principles into practice, they began to pay closer attention to the crops in their fields, and became aware of all kinds of serious malformations. They tested the deformed plants and found a high rate of contamination, so they began watching for these plants and weeding them out.

Another thing they knew about maize is that it out-crosses, so, to prevent GM contamination, they would have to keep GM maize from crossing with their maize. They began by implementing simple techniques such as planting trees around their fields. Some of the techniques they developed could be applied everywhere, whereas others were specific to certain communities. But the important thing was that they were setting up a system to avoid contamination.

There was much discussion about what to do with contaminated plants. It was strongly felt that if a very old variety has been in your family for generations and all of a sudden becomes contaminated, this maize should not simply be destroyed. Contaminated maize is sick and needs to be cured, not killed. It may take a year or 100 years to cure it, but it has to be done, because the maize has been with their communities for generations.

The peasant communities of Mexico have probably developed the deepest strategies of any communities facing GM contamination around the world. There are many lessons that can be drawn from their struggle, with perhaps the main ones being:

1) The need to look at GM contamination as part of a wider attack on farmers and local communities. Defending your crops means also defending your land and your water, and this requires strong communities, strong collective decision-making processes, and strong networks with other groups at the national and even international level. Such a wide approach allows more people to participate in the struggle. Even if not everyone can take care of the seeds, there are other things that they can do.

2) The importance of not being beholden to time frames. For the Mexcian communities, GM contamination is part of a war waged against them that is permanent, and so their approach has to be long-term and capable of being permanent. Their decision is to defend their maize, no matter how long it takes. As they see it, when deadlines are brought in, people are faced with what they cannot do, and usually little can be done in the short term, so they compromise. This the Mexican communities refuse to do.

3) The importance of looking at the issue from your own perspective. The communities in Mexico spent a lot of time in the early workshops discussing spirituality and their views on deities and creation. They talked about the rituals that could protect maize. Those invited from outside to participate had a hard time explaining the technicalities of genetic engineering, because the concept appeared so absurd. But, in the end, the communities arrived at their own core understanding of genetic engineering as a method of taking control over agricultural livelihoods, and this core understanding was far more important than the technical information.

4) The need for the communities to control the process. In Mexico, communities were able to maintain control over the processes because they were their own processes from the very beginning. When they had control over the initial tests, they kept the results to themselves for a long time because they wanted to discuss first among themselves what steps to take. And the fact that decisions were taken collectively, by many people, has helped to prevent big mistakes from being made. Mistakes are always going to happen but when a lot of people are involved chances are much lower that there will be fundamental mistakes. When the contamination was uncovered by university scientists, the processes followed were totally different.

5) The need to emphasise social struggles over legal struggles. Among the Mexican communities, there was a lot of discussion about biosafety laws, seed laws and other relevant laws. At a recent workshop dedicated to laws, a time line was presented of all the various laws that the Mexican government has passed in the last 15–20 years. From this picture, the communities came to a clear conclusion that the legal route was not an important route for their struggle. You may lose the lawsuit but if there is enough social pressure you may win in other ways. For them legal options are only effective when there is enough social pressure on authorities. So the tactic is not discarded, but it is not central.

An invasion of illegal GMOs into Thai farms

GM contamination was first reported in Thailand in 1999 after cotton samples from field research conducted by BIOTHAI and the Alternative Agriculture Network (AAN) were found to be contaminated with Bt cotton – a genetically engineered cotton variety produced by Monsanto. In 2004, tests made by Greenpeace revealed that a local farmer’s plantation in Khon Kaen province was contaminated by GM papaya. That farmer was one of 2,600 who had bought papaya seedlings from the Department of Agriculture’s research station where field trials of GM papaya were being conducted. At first, the government denied that GM crops were being grown in Thailand, but the contamination was so widespread that it reached another province, Ubol Ratchatani, where at least 90 farms had also received papaya seedlings. Most recently, in 2007, Chulalongkorn University’s Faculty of Science and BIOTHAI found GM contamination in maize, soya and cotton samples that they tested from provinces all over the country.

Printer friendly page  
Send this article to Friends by E-Mail