Fbae Logo
Home | | Support Us | Contact Us
Goals & Objectives Our Position False Propaganda Special Topics Important Publications Important Links Events news Biosafety
Fbae Header Home



MARCH 2009



The Biotech Frontier
- Ann Graham, strategy+business, March 9, 2009. Full interview

'William Haseltine explains the medical, energy, and industrial implications of the genomic revolution.'

EXCERPT: When most people think of the Human Genome Project, they think of it as a new knowledge base with the potential to transform modern medicine. But the effects of genomic research are much broader, with equally immense implications for the global economy and our natural environment. Ann Graham talks with biotech innovator William Haseltine for strategy+business magazine.

Where are the most important advances in genomics emerging?
The major benefit of genomic science thus far has been for humans. But in the long run, it is not just for humans. It is of humans. Through the genomic revolution we are opening up all the genomes of life for our perusal, and few people have thought through the implications.

Medicine will still be important going forward; every week brings a few new genomes into our knowledge banks. But I don't think medical applications will be the major use for investment dollars. The next revolution is going to be about energy, agriculture, and materials science. That, I think, is going to surprise people. Most of life on Earth is invisible. From the bottom of the sea at the hot sea vents, to the dirt under our city streets, there's an enormous range of microorganisms that play fundamental roles in shaping the course of life everywhere. Now, genetic science allows researchers to intervene at that level.

If you think about the future of biotechnology, what's old is becoming new again.

What do you mean by that?
Biotechnology literally means technology applied to manipulate the living world. Humans have been at this a very long time. It's one of the oldest technologies, and its greatest successes have been in agriculture, animal husbandry, and fermentation.

Now we are back in the same arenas, with a new set of emerging technologies. To give you an idea of the excitement around the use of biotechnology for energy: The Berkeley Center for Synthetic Biology received about $1 billion in grants in 2007. I'm the chairman of the board of trustees of this group. It was founded and is directed by Jay Keasling, a professor of bio- and chemical engineering at Berkeley and the director of Lawrence Berkeley National Laboratory's Physical Biosciences Division. About half the energy research money came from BP and the other half came from federal grants. This is only the beginning. Biotechnology will be the basis for a whole new petroleum-free carbon-based economy.

How would synthetic biology produce energy on a mass scale?
Synthetic biology is not a name I like. I prefer to call this new discipline constructive biology, because this form of biology constructs new molecules. But to answer your question: Plants have been fixing carbon from the atmosphere with the energy of sunlight, and converting it to fossil fuel, over the course of several hundred million years. This means that living systems have the power, of course, to make our fuel. The trick is to do it much, much faster.

We already know how to effectively create biomass from plants. We grow forests for wood; we have agriculture. With a combination of modern biotechnology techniques we could remove carbon from the air, turn it into a fuel, use that fuel, and return the carbon to the atmosphere so the whole process is carbon-neutral with respect to the concentration of carbon dioxide in the atmosphere. Essentially, these techniques would allow us to farm energy, coupling the photosynthetic process with biochemical production of useful hydrocarbons.

Let me take you back in time to think about that for a minute. Before there was life on Earth, it was basically a wet, hot rock. When it cooled down, it was a rock with water. Living organisms arose (we're not quite sure how), and over the course of several billion years, they transformed rock and water into this beautiful Earth. That's enormous chemical power, and all of it is locked up in the genes of organisms that proliferate all over the world.

Now that we can directly read genomes, store them in computers, and analyze them, and splice genes from one organism to another, we can move hydrocarbons through almost any chemical pathway we want. Suppose you wanted to take yeast that normally makes ethanol and convert it to yeast that makes diesel fuel. You would write up the chemical path to show the normal process to ethanol, and then reroute the path to diesel fuel. In modern organic chemistry, that would involve a series of eight or nine steps in a test tube using various catalysts. But now you can use genome database analysis to identify and isolate enzymes that can provide that pathway naturally. You can then modify those enzymes so they're more efficient. This is an example of constructive biology.

We know constructive biology works because these were the methods used to produce the antimalarial drug artemisinin in both bacteria and yeast. Plants use a very complicated and expensive process to make artemisinin. At the Center for Synthetic Biology, a project led by Jay Keasling (and funded by the Bill and Melinda Gates Foundation) re-created the entire pathway both in bacteria and in yeast. That breakthrough, which makes artemisinin cheaper to produce and therefore affordable to the world's poorest children, has made Keasling a leader in the field of constructive biology.

What are the implications for food production?
Earth's population is projected to rise to almost 10 billion by 2050. So the need for freshwater and land is acute; we must use our agricultural land more intensively. Genetically modified organisms can help with that. They can produce higher yields and more nutritious foods. They can obviate the need for plowing. Most people don't understand what plowing is for. It's really just a weed control technology. You plow over and under the previous year's crop. But if you have the right combinations of environment-friendly herbicides and the agricultural crops that are resistant to those herbicides, you don't need to plow. No-plow agriculture saves topsoil and energy. Once you don't need so much nitrogen fertilizer or complex pesticides, you can get to an agriculture that is much more energy efficient. You can also breed in drought resistance.

People will be healthier as a result. And it will allow us to restore many habitats, because we'll be using less land to grow food.

What about the fears about genetically modified foods?
The technology is rapidly spreading, despite the European opposition. It's spreading in many parts of the world because of its obvious advantages. For example, meat is a highly inefficient source of protein; over the next 20 to 30 years, people will move from meat to plants as a source of protein. I've been in Chinese restaurants that serve something that looks like a fish with skin and scales, but it's entirely made out of soy protein, which is a plant product. You see a chicken that looks like a chicken, it's carved like a chicken, but it's not a chicken. You can make foods look and taste very attractive with manipulation, which, in this case, involves a process to spin soy proteins into fibers. <cut>

Can we expect the next wave of medical and green genomics to reach more of the two-thirds of the world's people who live at the "bottom of the pyramid," in lower-income countries?

When the Soviet Union fell and the Cold War ended, the Russians, the Chinese, and the Indians all joined the global economy. C. K. Prahalad's The Fortune at the Bottom of the Pyramid: Eradicating Poverty through Profits [Wharton School Publishing, 2004] was one of the first books to recognize this. It is a profound work that is now changing the thinking of a new generation of leaders. What is about to happen, and is already happening in India, is a reorientation of business toward the 2 billion people worldwide who are emerging from poverty. This is a fundamental transformation. <cut>

Can industrial society be sustainable when there are nearly 10 billion people on the planet?

Yes, if we replace our current generation of wasteful technologies. Biotechnologies will have a significant role in that change. If you look at the full range of what we've talked about, we have gone from burning wood to regrowing arteries. That's a pretty broad span of life sciences, and it's tremendously exciting.

Ann Graham is is a contributing editor of strategy+business. She is the coauthor, with Larry Rosenberger and John Nash, of The Deciding Factor: The Power of Analytics to Make Every Decision a Winner (Jossey-Bass, 2009).